The e-Prot FET-OPEN project “Engineered Conductive Proteins for Bioelectronics” started in September 2021. Positions will be available soon.


Proteins—the building blocks of natural systems—offer advantageous structural properties for the design of functional materials and present rare and modest but appealing electrical conduction features. The e-Prot project vision encompasses the rational design of efficient conductive protein systems (e-Ps), and the fabrication of all-protein based conductive structures and materials, targeting a radical change in design of "green" electronic and energy storage devices. This breakthrough relies on a multidisciplinary scientific approach that combines i) a profound understanding of protein building blocks, biomolecular design principles, state-of-the-art synthetic biology, and chemical tools, to systematically fabricate new protein materials; and ii) cutting-edge characterization techniques and computational models that will provide an unprecedented fundamental understanding of protein conduction thus building a solid foundation for their technological implementation. Selected engineered conductive proteins will be upscaled and implemented as smart ink-based conductors and ionic electrolytes in energy storage devices, as a first demonstration of the feasibility of an inherently biocompatible and fully sustainable all-protein (e-Prot) bioelectronics platform. This groundbreaking approach surpasses current bio-inspired technologies, transforming the emerging research field of protein-based bioelectronics, currently still limited to basic research, to a new level of sophistication facilitating real-world applications.